
如果你没数晕的话(记住:最内、最外的第0级不作数),可以看到:纵使是世界最佳记录,也不过是5+4的组合,而没有5+5的。我们看到,在5+4时,雾虹的最内圈和佛光的最外圈已经无缝相接了。
世界著名大气光象专家LesCowley做过一个经典的关于衍射光环粗细的模拟研究。云雾中的水滴越小,衍射出来的多重轮回就越粗大(只决定粗细,和级数无关。级数之和衍射强度有关)。对照模拟图,国内贡嘎的这次雾虹+佛光,其云雾水滴大小,大概就是40微米左右了。国外飞机上那张,水滴稍微小。而国外地面拍的那张照片,则明显因水滴更小。水滴过小,会使雾虹和佛光提前“相撞”。而在我看过的所有世界影像当中,雾虹5+佛光4,一共9级衍射,加上没有计数的两个“0级”,就是11轮的光环——这已经是世界记录了。而至于贡嘎这次这种情况,水滴既不过小,也不太大,从而第5级衍射雾虹和第4级衍射佛光之间,还留有空白余地——如果衍射再强一些,会出现第5级的佛光、总共5+5、更进一步的终极神奇天象吗。我认为会的,但没看过这样的记录。
我们的贡嘎山平了世界记录,但也许未来,我们还可以超越世界记录。
No.14
双子虹
在我国的进一步记录
双子虹,这个名字可能不好,它容易让零基础的读者误认为是烂大街的双彩虹,但它是Twinnedbows的直译,而英文原名的意思十分贴合,因为它们是本是同根生、分出两叉的彩虹。
这是一个世界自然未解之谜。但目前主流的科学猜想看上去很有道理:认为它是扁平形状的水滴折射/反射阳光所致。
扁平的水滴是如何形成的?下面这张图展示了水滴的下落与形状的关系。水滴在下落过程中汇聚变大,这是降雨过程中的常态,但水滴积聚的越大,其所受空气阻力的分布会发生变化,形成扁平形状水滴。
然而真实情况是,要想形成清晰、明亮的大气光象,就得形成它的介质(水滴或冰晶)形状、大小均一且集中大量同时存在。——纵然水滴下落过程中不断变大、变扁,然而要想形成清晰的分叉彩虹,就得有一群水滴刚好扁平成一样的形状、大小一致,这无论怎么想都是可能性太低微、近乎神力才能实现的小概率巧合——这简直可以比喻于,在北京复杂的交通情况下,要求某一段时间内,三环路上的所有汽车保持均等的速度和间距不变。这怎么可能呢?